dinov2-base

Maintainer: facebook

Total Score

57

Last updated 5/30/2024

🤖

PropertyValue
Run this modelRun on HuggingFace
API specView on HuggingFace
Github linkNo Github link provided
Paper linkNo paper link provided

Create account to get full access

or

If you already have an account, we'll log you in

Model overview

The dinov2-base model is a Vision Transformer (ViT) model trained using the DINOv2 self-supervised learning method. It was developed by researchers at Facebook. The DINOv2 method allows the model to learn robust visual features without direct supervision, by pre-training on a large collection of images. This contrasts with models like dino-vitb16 and vit-base-patch16-224-in21k, which were trained in a supervised fashion on ImageNet.

Model inputs and outputs

The dinov2-base model takes images as input and outputs a sequence of hidden feature representations. These features can then be used for a variety of downstream computer vision tasks, such as image classification, object detection, or visual question answering.

Inputs

  • Images: The model accepts images as input, which are divided into a sequence of fixed-size patches and linearly embedded.

Outputs

  • Image feature representations: The final output of the model is a sequence of hidden feature representations, where each feature corresponds to a patch in the input image. These features can be used for further processing in downstream tasks.

Capabilities

The dinov2-base model is a powerful pre-trained vision model that can be used as a feature extractor for a wide range of computer vision applications. Because it was trained in a self-supervised manner on a large dataset of images, the model has learned robust visual representations that can be effectively transferred to various tasks, even with limited labeled data.

What can I use it for?

You can use the dinov2-base model for feature extraction in your computer vision projects. By feeding your images through the model and extracting the final hidden representations, you can leverage the model's powerful visual understanding for tasks like image classification, object detection, and visual question answering. This can be particularly useful when you have a small dataset and want to leverage the model's pre-trained knowledge.

Things to try

One interesting aspect of the dinov2-base model is its self-supervised pre-training approach, which allows it to learn visual features without the need for expensive manual labeling. You could experiment with fine-tuning the model on your own dataset, or using the pre-trained features as input to a custom downstream model. Additionally, you could compare the performance of the dinov2-base model to other self-supervised and supervised vision models, such as dino-vitb16 and vit-base-patch16-224-in21k, to see how the different pre-training approaches impact performance on your specific task.



This summary was produced with help from an AI and may contain inaccuracies - check out the links to read the original source documents!

Related Models

🧠

dino-vitb16

facebook

Total Score

96

The dino-vitb16 model is a Vision Transformer (ViT) trained using the DINO self-supervised learning method. Like other ViT models, it takes images as input and divides them into a sequence of fixed-size patches, which are then linearly embedded and processed by transformer encoder layers. The DINO training approach allows the model to learn an effective inner representation of images without requiring labeled data, making it a versatile foundation for a variety of downstream tasks. In contrast to the vit-base-patch16-224-in21k and vit-base-patch16-224 models which were pre-trained on ImageNet-21k in a supervised manner, the dino-vitb16 model was trained using the self-supervised DINO approach on a large collection of unlabeled images. This allows it to learn visual features and representations in a more general and open-ended way, without being constrained to the specific classes and labels of ImageNet. The nsfw_image_detection model is another ViT-based model, but one that has been fine-tuned on a specialized task of classifying images as "normal" or "NSFW" (not safe for work). This demonstrates how the general capabilities of ViT models can be adapted to more specific use cases through further training. Model inputs and outputs Inputs Images**: The model takes images as input, which are divided into a sequence of 16x16 pixel patches and linearly embedded. Outputs Image features**: The model outputs a set of feature representations for the input image, which can be used for various downstream tasks like image classification, object detection, and more. Capabilities The dino-vitb16 model is a powerful general-purpose image feature extractor, capable of capturing rich visual representations from input images. Unlike models trained solely on labeled datasets like ImageNet, the DINO training approach allows this model to learn more versatile and transferable visual features. This makes the dino-vitb16 model well-suited for a wide range of computer vision tasks, from image classification and object detection to image retrieval and visual reasoning. The learned representations can be easily fine-tuned or used as features for building more specialized models. What can I use it for? You can use the dino-vitb16 model as a pre-trained feature extractor for your own image-based machine learning projects. By leveraging the model's general-purpose visual representations, you can build and train more sophisticated computer vision systems with less labeled data and computational resources. For example, you could fine-tune the model on a smaller dataset of labeled images to perform image classification, or use the features as input to an object detection or segmentation model. The model could also be used for tasks like image retrieval, where you need to find similar images in a large database. Things to try One interesting aspect of the dino-vitb16 model is its ability to learn visual features in a self-supervised manner, without relying on labeled data. This suggests that the model may be able to generalize well to a variety of visual domains and tasks, not just those seen during pre-training. To explore this, you could try fine-tuning the model on datasets that are very different from the ones used for pre-training, such as medical images, satellite imagery, or even artistic depictions. Observing how the model's performance and learned representations transfer to these new domains could provide valuable insights into the model's underlying capabilities and limitations. Additionally, you could experiment with using the dino-vitb16 model as a feature extractor for multi-modal tasks, such as image-text retrieval or visual question answering. The rich visual representations learned by the model could complement text-based features to enable more powerful and versatile AI systems.

Read more

Updated Invalid Date

🔄

vit-base-patch16-224-in21k

google

Total Score

149

The vit-base-patch16-224-in21k is a Vision Transformer (ViT) model pre-trained on the large ImageNet-21k dataset, which contains 14 million images and 21,843 classes. It was introduced in the paper "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" by Dosovitskiy et al. and first released in the Google Research vision_transformer repository. Similar models include the vit-base-patch16-224 model, which was also pre-trained on ImageNet-21k but then fine-tuned on the smaller ImageNet 2012 dataset. The beit-base-patch16-224-pt22k-ft22k model from Microsoft uses a self-supervised pre-training approach on ImageNet-22k before fine-tuning. The CLIP model from OpenAI also uses a Vision Transformer encoder, but is trained with a contrastive loss on web-crawled image-text pairs. Model inputs and outputs Inputs Images**: The model takes in images as input, which are divided into fixed-size patches (16x16 pixels) and linearly embedded. A special [CLS] token is also added to the sequence. Outputs Image classification logits**: The final output of the model is a vector of logits, corresponding to the predicted probability distribution over the 21,843 ImageNet-21k classes. Capabilities The vit-base-patch16-224-in21k model is a powerful image classification model that has been pre-trained on a large and diverse dataset. It can be used for zero-shot classification of images into the 21,843 ImageNet-21k categories. Compared to convolutional neural networks, the Vision Transformer architecture used by this model is better able to capture long-range dependencies in images, which can lead to improved performance on some tasks. What can I use it for? You can use the raw vit-base-patch16-224-in21k model for zero-shot image classification on the 21,843 ImageNet-21k classes. For more specialized tasks, you can fine-tune the model on your own dataset - the model hub includes several fine-tuned versions targeting different applications. Things to try One interesting aspect of the vit-base-patch16-224-in21k model is its ability to perform well on a wide range of image recognition tasks, even those quite different from the original ImageNet classification problem it was pre-trained on. Researchers have found that the model's internal representations are remarkably general and can be leveraged for tasks like texture recognition, fine-grained classification, and remote sensing. Try experimenting with transferring the model to some of these novel domains to see how it performs.

Read more

Updated Invalid Date

⚙️

vit-base-patch16-224

google

Total Score

552

The vit-base-patch16-224 is a Vision Transformer (ViT) model pre-trained on ImageNet-21k, a large dataset of 14 million images across 21,843 classes. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. The weights were later converted from the timm repository by Ross Wightman. The vit-base-patch16-224-in21k model is another ViT model pre-trained on the larger ImageNet-21k dataset, but not fine-tuned on the smaller ImageNet 2012 dataset like the vit-base-patch16-224 model. Both models use a transformer encoder architecture to process images as sequences of fixed-size patches, with the addition of a [CLS] token for classification tasks. The all-mpnet-base-v2 is a sentence-transformer model that maps sentences and paragraphs to a 768-dimensional dense vector space, enabling tasks like clustering and semantic search. It was fine-tuned on over 1 billion sentence pairs using a self-supervised contrastive learning objective. The owlvit-base-patch32 model is designed for zero-shot and open-vocabulary object detection, allowing it to detect objects without relying on pre-defined class labels. The stable-diffusion-x4-upscaler is a text-guided latent diffusion model trained for 1.25M steps on high-resolution images (>2048x2048) from the LAION dataset. It can be used to upscale low-resolution images by 4x while preserving semantic information. Model inputs and outputs Inputs Images**: The vit-base-patch16-224 and vit-base-patch16-224-in21k models take images as input, which are divided into fixed-size patches and linearly embedded. Sentences/Paragraphs**: The all-mpnet-base-v2 model takes sentences or paragraphs as input and encodes them into a dense vector representation. Low-resolution images and text prompts**: The stable-diffusion-x4-upscaler model takes low-resolution images and text prompts as input, and generates a high-resolution upscaled image. Outputs Image classification logits**: The vit-base-patch16-224 and vit-base-patch16-224-in21k models output logits for each of the 1,000 ImageNet classes. Sentence embeddings**: The all-mpnet-base-v2 model outputs a 768-dimensional vector representation for each input sentence or paragraph. High-resolution upscaled images**: The stable-diffusion-x4-upscaler model generates a high-resolution (4x) upscaled image based on the input low-resolution image and text prompt. Capabilities The vit-base-patch16-224 and vit-base-patch16-224-in21k models are capable of classifying images into 1,000 ImageNet classes with high accuracy. The all-mpnet-base-v2 model can be used for a variety of sentence-level tasks, such as information retrieval, clustering, and semantic search. The stable-diffusion-x4-upscaler model can generate high-resolution images from low-resolution inputs while preserving semantic information. What can I use it for? The vit-base-patch16-224 and vit-base-patch16-224-in21k models can be used for image classification tasks, such as recognizing objects, scenes, or activities in images. The all-mpnet-base-v2 model can be used to build applications that require semantic understanding of text, such as chatbots, search engines, or recommendation systems. The stable-diffusion-x4-upscaler model can be used to generate high-quality images for use in creative applications, design, or visualization. Things to try With the vit-base-patch16-224 and vit-base-patch16-224-in21k models, you can try fine-tuning them on your own image classification datasets to adapt them to your specific needs. The all-mpnet-base-v2 model can be used as a starting point for training your own sentence embedding models, or to generate sentence-level features for downstream tasks. The stable-diffusion-x4-upscaler model can be combined with text-to-image generation models to create high-resolution images from text prompts, opening up new possibilities for creative applications.

Read more

Updated Invalid Date

🏷️

vilt-b32-finetuned-vqa

dandelin

Total Score

368

The vilt-b32-finetuned-vqa model is a Vision-and-Language Transformer (ViLT) model that has been fine-tuned on the VQAv2 dataset. ViLT is a transformer-based model introduced in the paper "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" by Kim et al. Unlike other vision-language models that rely on convolutional neural networks or region proposals, ViLT directly encodes image and text input through transformer layers. Similar models include the nsfw_image_detection model, which is a fine-tuned Vision Transformer (ViT) for NSFW image classification, the vit-base-patch16-224-in21k model, a base-sized Vision Transformer pre-trained on ImageNet-21k, and the owlvit-base-patch32 model, a zero-shot text-conditioned object detection model. Model inputs and outputs The vilt-b32-finetuned-vqa model takes an image and a text query as input and predicts an answer to the question about the image. Inputs Image**: An image to be analyzed. Text**: A question or text query about the image. Outputs Answer**: A predicted answer to the question about the image. Capabilities The vilt-b32-finetuned-vqa model is capable of answering questions about the contents of an image. It can be used for tasks such as visual question answering, where the model needs to understand both the visual and language components to provide a relevant answer. What can I use it for? You can use the vilt-b32-finetuned-vqa model for visual question answering tasks, where you want to understand the contents of an image and answer questions about it. This could be useful for building applications that allow users to interact with images in a more natural, conversational way, such as: Educational apps that allow students to ask questions about images Virtual assistant apps that can answer questions about images Image-based search engines that can respond to natural language queries Things to try One interesting thing to try with the vilt-b32-finetuned-vqa model is to explore its ability to handle diverse and open-ended questions about images. Unlike models that are trained on a fixed set of question-answer pairs, this model has been fine-tuned on the VQAv2 dataset, which contains a wide variety of natural language questions about images. Try asking the model questions that go beyond simple object recognition, such as questions about the relationships between objects, the activities or events depicted in the image, or the emotions and intentions of the subjects. Another thing to explore is how the model's performance varies across different types of images and questions. You could try evaluating the model on specialized datasets or benchmarks to understand its strengths and weaknesses, and identify areas where further fine-tuning or model improvements could be beneficial.

Read more

Updated Invalid Date