sn-xlm-roberta-base-snli-mnli-anli-xnli

Maintainer: symanto

Total Score

61

Last updated 5/28/2024

🔄

PropertyValue
Run this modelRun on HuggingFace
API specView on HuggingFace
Github linkNo Github link provided
Paper linkNo paper link provided

Create account to get full access

or

If you already have an account, we'll log you in

Model overview

The sn-xlm-roberta-base-snli-mnli-anli-xnli model is a Siamese network model trained for zero-shot and few-shot text classification. It is based on the xlm-roberta-base model and was trained on SNLI, MNLI, ANLI, and XNLI datasets. This model maps sentences and paragraphs to a 768 dimensional dense vector space, making it useful for tasks like clustering or semantic search.

Similar models include paraphrase-xlm-r-multilingual-v1, paraphrase-multilingual-mpnet-base-v2, all-mpnet-base-v2, and paraphrase-multilingual-MiniLM-L12-v2, all developed by the sentence-transformers team.

Model inputs and outputs

Inputs

  • Sentences or paragraphs of text

Outputs

  • 768-dimensional dense vector representations of the input text

Capabilities

The sn-xlm-roberta-base-snli-mnli-anli-xnli model can be used for a variety of text-related tasks, such as text classification, clustering, and semantic search. Its ability to map text to a dense vector space allows for efficient comparison and retrieval of semantically similar content.

What can I use it for?

This model can be particularly useful for applications that require understanding the semantic relationship between text, such as:

  • Information retrieval: Find relevant documents or passages based on user queries
  • Text clustering: Group similar text documents together
  • Recommendation systems: Suggest related content based on user interests

The provided maintainer profile offers additional insights into the creators and potential use cases for this model.

Things to try

One interesting aspect of this model is its ability to perform well on zero-shot and few-shot text classification tasks. This means that the model can be applied to new classification problems with minimal additional training, making it a versatile tool for rapidly developing text-based applications.

Researchers and developers can experiment with fine-tuning the model on domain-specific datasets or combining it with other NLP techniques to explore novel applications and push the boundaries of what's possible with transformer-based sentence embeddings.



This summary was produced with help from an AI and may contain inaccuracies - check out the links to read the original source documents!

Related Models

↗️

paraphrase-xlm-r-multilingual-v1

sentence-transformers

Total Score

59

The paraphrase-xlm-r-multilingual-v1 model is a part of the sentence-transformers suite of models. It was created by the sentence-transformers team. This model is a multilingual sentence and paragraph encoder that maps text to a 768-dimensional dense vector space. It can be used for tasks like clustering or semantic search across multiple languages. The model is based on the XLM-RoBERTa architecture and was trained on a large corpus of over 1 billion sentence pairs from diverse sources. Some similar models in the sentence-transformers collection include paraphrase-multilingual-mpnet-base-v2, paraphrase-MiniLM-L6-v2, all-mpnet-base-v2, and all-MiniLM-L12-v2. Model inputs and outputs Inputs Text**: The model takes in one or more sentences or paragraphs as input. Outputs Sentence embeddings**: The model outputs a 768-dimensional dense vector for each input text. These sentence embeddings capture the semantics of the input and can be used for downstream tasks. Capabilities The paraphrase-xlm-r-multilingual-v1 model is capable of encoding text in multiple languages into a shared semantic vector space. This allows for cross-lingual applications like multilingual semantic search or clustering. The model performs well on a variety of semantic textual similarity benchmarks. What can I use it for? This model can be used for a variety of natural language processing tasks that require understanding the semantic meaning of text, such as: Semantic search**: Use the sentence embeddings to find relevant documents or passages for a given query, across languages. Text clustering**: Group similar text documents or paragraphs together based on their semantic similarity. Paraphrase detection**: Identify sentences that convey the same meaning using the similarity between their embeddings. Multi-lingual applications**: Leverage the cross-lingual capabilities to build applications that work across languages. Things to try One interesting aspect of this model is its ability to capture the semantics of text in a multilingual setting. You could try using it to build a cross-lingual semantic search engine, where users can query in their preferred language and retrieve relevant results in multiple languages. Another idea is to use the model's embeddings to cluster news articles or social media posts in different languages around common topics or events.

Read more

Updated Invalid Date

⛏️

paraphrase-multilingual-mpnet-base-v2

sentence-transformers

Total Score

254

The paraphrase-multilingual-mpnet-base-v2 model is a sentence-transformers model that maps sentences and paragraphs to a 768-dimensional dense vector space. It can be used for a variety of tasks like clustering or semantic search. This model is multilingual and was trained on a large dataset of over 1 billion sentence pairs across languages like English, Chinese, and German. The model is similar to other sentence-transformers models like all-mpnet-base-v2 and jina-embeddings-v2-base-en, which also provide general-purpose text embeddings. Model inputs and outputs Inputs Text input, either a single sentence or a paragraph Outputs A 768-dimensional vector representing the semantic meaning of the input text Capabilities The paraphrase-multilingual-mpnet-base-v2 model is capable of producing high-quality text embeddings that capture the semantic meaning of the input. These embeddings can be used for a variety of natural language processing tasks like text clustering, semantic search, and document retrieval. What can I use it for? The text embeddings produced by this model can be used in many different applications. For example, you could use the embeddings to build a semantic search engine, where users can search for relevant documents by typing in a query. The model would generate embeddings for the query and the documents, and then find the most similar documents based on the cosine similarity between the query and document embeddings. You could also use the embeddings for text clustering, where you group together documents that have similar semantic meanings. This could be useful for organizing large collections of documents or identifying related content. Additionally, the multilingual capabilities of this model make it well-suited for applications that need to handle text in multiple languages, such as international customer support or cross-border e-commerce. Things to try One interesting thing to try with this model is to use it for cross-lingual text retrieval. Since the model produces embeddings in a shared semantic space, you can use it to find relevant documents in a different language than the query. For example, you could search for English documents using a French query, or vice versa. Another interesting application is to use the embeddings as features for downstream machine learning models, such as sentiment analysis or text classification. The rich semantic information captured by the model can help improve the performance of these types of models.

Read more

Updated Invalid Date

🤷

all-mpnet-base-v2

sentence-transformers

Total Score

700

The all-mpnet-base-v2 model is a sentence-transformer model developed by the sentence-transformers team. It maps sentences and paragraphs to a 768-dimensional dense vector space, making it useful for tasks like clustering or semantic search. This model performs well on a variety of language understanding tasks and can be easily used with the sentence-transformers library. It is a variant of the MPNet model, which combines the strengths of BERT and XLNet to capture both bidirectional and autoregressive information. Model inputs and outputs Inputs Text inputs can be individual sentences or paragraphs. Outputs The model produces a 768-dimensional dense vector representation for each input text. These vector embeddings can be used for downstream tasks like semantic search, text clustering, or text similarity measurement. Capabilities The all-mpnet-base-v2 model is capable of producing high-quality sentence embeddings that can capture the semantic meaning of text. These embeddings can be used to perform tasks like finding similar documents, clustering related texts, or retrieving relevant information from a large corpus. The model's performance has been evaluated on a range of benchmark tasks and demonstrates strong results. What can I use it for? The all-mpnet-base-v2 model is well-suited for a variety of natural language processing applications, such as: Semantic search**: Use the text embeddings to find the most relevant documents or passages given a query. Text clustering**: Group similar texts together based on their vector representations. Recommendation systems**: Suggest related content to users based on the similarity of text embeddings. Multi-modal retrieval**: Combine the text embeddings with visual features to build cross-modal retrieval systems. Things to try One key capability of the all-mpnet-base-v2 model is its ability to handle long-form text. Unlike many language models that are limited to short sequences, this model can process and generate embeddings for passages and documents up to 8,192 tokens in length. This makes it well-suited for tasks involving long-form content, such as academic papers, technical reports, or lengthy web pages. Another interesting aspect of this model is its potential for use in low-resource settings. The sentence-transformers team has developed a range of smaller, more efficient versions of the model that can be deployed on less powerful hardware, such as laptops or edge devices. This opens up opportunities to bring high-quality language understanding capabilities to a wider range of applications and users.

Read more

Updated Invalid Date

📶

paraphrase-multilingual-MiniLM-L12-v2

sentence-transformers

Total Score

492

The paraphrase-multilingual-MiniLM-L12-v2 model is a sentence-transformers model that maps sentences and paragraphs to a 384 dimensional dense vector space. It can be used for tasks like clustering or semantic search. This model is similar to other sentence-transformers models like paraphrase-MiniLM-L6-v2, paraphrase-multilingual-mpnet-base-v2, and paraphrase-xlm-r-multilingual-v1, which also map text to dense vector representations. Model inputs and outputs Inputs Text data, such as sentences or paragraphs Outputs A 384 dimensional vector representation of the input text Capabilities The paraphrase-multilingual-MiniLM-L12-v2 model can be used to generate vector representations of text that capture semantic information. These vector representations can then be used for tasks like clustering, semantic search, and other applications that require understanding the meaning of text. For example, you could use this model to find similar documents or articles based on their content, or to group together documents that discuss similar topics. What can I use it for? The paraphrase-multilingual-MiniLM-L12-v2 model can be used for a variety of natural language processing tasks, such as: Information retrieval**: Use the sentence embeddings to find similar documents or articles based on their content. Text clustering**: Group together documents that discuss similar topics by clustering the sentence embeddings. Semantic search**: Use the sentence embeddings to find relevant documents or articles based on the meaning of a query. You could incorporate this model into applications like search engines, recommendation systems, or content management systems to improve the user experience and surface more relevant information. Things to try One interesting thing to try with this model is to use it to generate embeddings for longer passages of text, such as articles or book chapters. The model can handle input up to 256 word pieces, so you could try feeding in larger chunks of text and see how the resulting embeddings capture the overall meaning and themes. You could then use these embeddings for tasks like document similarity or topic modeling. Another thing to try is to finetune the model on a specific domain or task, such as legal documents or medical literature. This could help the model better capture the specialized vocabulary and concepts in that domain, making it more useful for applications like search or knowledge management.

Read more

Updated Invalid Date